EXACT SOLUTIONS OF AXISYMMETRIC FLOWS OF AN IDEAL FLUID

(TOCHNOE RESHENIE OSESIMMETRICHNOI ZADACHI IDEAL'NOI ZHIDKOSTII)

PMN Vol.23, No.2, 1959, p. 388

G.I. NAZAROV (Tomsk)

(Received 23 December 1958)

The equation for the Stokes' stream function ψ in steady potential axisymmetric flows of incompressible fluids in cylindrical coordinates x, y, θ takes the form:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} - \frac{1}{y} \frac{\partial \psi}{\partial y} = 0 \qquad (y > 0)$$
⁽¹⁾

If we set $\psi = \sqrt{y} \overline{\psi^0}$, we obtain

$$\frac{\partial^2 \psi^{\circ}}{\partial x^2} + \frac{\partial^2 \psi^{\circ}}{\partial y^2} - \frac{3\psi^{\circ}}{4y^2} = 0$$
⁽²⁾

We will seek solutions in the form [1]:

$$\psi^{\circ} = \Phi_{0}(x, y) + \sum_{k=1}^{\infty} \Phi_{k}(x, y) f_{k}(y)$$
(3)

where Φ_0 , Φ_k are arbitrary harmonic functions. Equation (2) then becomes:

$$-\frac{3}{4y^2}\Phi_0 + \sum_{k=1}^{\infty} \left[2\frac{\partial \Phi_k}{\partial y} f_k' + \Phi_k \left(f_k'' - \frac{3}{4y^2} f_k \right) \right] = 0$$
(4)

On the functions f_k and Φ_k we impose the following conditions

$$f_{k}'' - \frac{3f_{k}}{4y^{2}} = f_{k+1}', \qquad 2\frac{\partial\Phi_{k}}{\partial y} = -\Phi_{k-1}$$
(5)

so that (4) takes the form:

$$-\left(\frac{3}{4y^2} + f_1'\right)\Phi_0 + \Phi_k f_{k+1}' = 0, \qquad \lim_{k \to \infty} \Phi_k f_{k+1}' = 0 \tag{6}$$

Consequently,

$$f_{1} = -\frac{3}{4} \int_{\infty}^{y} \frac{dy}{y^{2}} = \frac{3}{4y}, \qquad f_{k+1} = \frac{df_{k}}{dy} - \frac{3}{4} \int_{\infty}^{y} \frac{f_{k}}{y^{2}} dy, \qquad \Phi_{k} = -\frac{1}{2} \int_{\infty}^{y} \Phi_{k-1} dy \qquad (7)$$

The formula for f_k follows easily

$$f_k = (-1)^k \frac{k! C_k}{y^k}, \qquad C_k = \frac{C_{k-1} (k + 1/2) (k - 3/2)}{k^2}, \qquad C_0 = 1$$
 (8)

Let us introduce the complex potential $W(z) = \phi_0(x, y) + i\Phi_0(x, y)$, (z = x + iy). Then

$$\Phi_0 = \operatorname{Im} W(z), \qquad \Phi_k = \frac{(-1)^k}{(k-1)! \, 2^k} \operatorname{Im} \int_0^z (z-\zeta)^{k-1} W(\zeta) \, d\zeta \tag{9}$$

$$\psi^{0} = \operatorname{Im}\left\{W(z) - \int_{0}^{z} W(\zeta) \sum_{k=1}^{\infty} \frac{(-1)^{k} (z-\zeta)^{k-1}}{2^{k} (k-1)!} f_{k}(y) d\zeta\right\}$$
(10)

Recognizing the character of hypergeometric series in the variations of $C_{\mathbf{k}}$ and (8), we obtain

$$\psi^{0} = \operatorname{Im}\left\{W(z) - \int_{0}^{z} W(\zeta) \frac{d}{d\zeta} H\left(\frac{3}{2}, -\frac{1}{2}, 1, \frac{z-\zeta}{2y}\right) d\zeta\right\}$$
(11)

Setting W(0) = 0, we arrive at the desired solution of (1):

$$\Psi = V \overline{y} \operatorname{Im} \left\{ \int_{0}^{\infty} \frac{dW(\zeta)}{d\zeta} H\left(\frac{3}{2}, -\frac{1}{2}, 1, \frac{z-\zeta}{2y}\right) d\zeta \right\}$$
(12)

where $W(\zeta)$ is an arbitrary function. The solution of the axisymmetric problem of incompressible fluids has been related to the complex potential solution of the two-dimensional problem. It is possible to obtain more general solutions when we consider indefinite integrals in (7).

BIBLIOGRAPHY

 Von Mises R. and Shiffer, M., On Bergman's integral equations of plane flows of compressible gases, Vol. I, Advances in Applied Mechanics, Academic Press, 1948; Russian translation 1955.

Translated by M.V.M.

546