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The equation for the Stokes’ stream function $ in steady potential axi- 
symmetric flows of incompressible fluids in cylindrical coordinates x, y, 
8 takes the form: 

If we set $ = d7;p , we obtain 

We will seek solutions in the form [ 1 1: 

4” = @o (? Y) + jj 0, (& Y) fk (Y) (3) 
k=zl 

where @o, @A are arbitrary harmonic functions. Equation (2) then becomes: 
0) 

aOk -&ID,+ 2 [2@‘+@k fk’ - & fk);= o 
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On the functions fA and @A we impose the following conditions 
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so that (4) takes the form: 
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The formula for fk follows easily 

k!C, 
l*=(-vy,, c,= 

Ck+ (k t l/2) (k - s,'2) 
k" , c 0=l 

Let us introduce the complex potential l(z) = C&(X, y) + i @u (r, y), 
(2 = x + iy). Then 

(9) 

Recognizing the character of hypergeometric series in the variations 
of Gk and (8). we obtain 

Setting I(O) = 0, we arrive at the desired solution of (1): 

ill) 

where II([) is an arbitrary function. The solution of the axisymmetric 
problem of incompressible fluids has been related to the complex potential 
solution of the two-dimensional problem. It is possible to obtain more 
general solutions when we consider indefinite integrals in (7). 
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